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Abstract. We consider the ability of the continuum-scale Richards equation (RE) with
standard monotonic constitutive relations and hysteretic equations of state to model
gravity-driven fingers in unsaturated porous media and, in particular, the underlying
nonmonotonicity observed along the vertical extent of fingers. As published in a number
of recent papers, finger-like solutions with nonmonotonic profiles can be simulated
numerically using a downwind averaging method. However, we find these fingers to be
artifacts, generated by the combined effects of a truncation error induced oscillation or
oversaturation at the wetting front, and capillary hysteresis. As the oscillation is removed,
either through grid refinement or the use of inherently monotone schemes, the
numerically generated fingers disappear, and the solution becomes monotonic. Thus the
RE along with standard monotonic hydraulic properties does not contain the critical
physics required to model gravity-driven fingers and must be considered inadequate for
unsaturated flow in initially dry, highly nonlinear, and hysteretic media where these fingers
occur.

1. Introduction

Gravity-driven fingers in unsaturated porous media were
noted by a number of early researchers [e.g., Palmquist and
Johnson, 1960, 1962; Tabuchi, 1961; Peck, 1965] and formally
connected to the instability of a downward advancing wetting
front (WF) by Hill and Parlange [1972]. Subsequent experimen-
tal observations in initially dry, water-wettable, homogenous
sands at low supply rates and where the air phase could escape
freely, revealed that, as a finger grows downward, its tip over-
saturates and then drains a distance behind [e.g., Glass et al.,
1989b; Selker et al., 1992]. In a hysteretic medium such a non-
monotonic response induces heterogeneity in hydraulic prop-
erties and produces a finger core and fringe region structure
that persists in time and over subsequent drainage and infil-
tration cycles. In fact, as noted by Glass and Nicholl [1996],
from the time of the initial finger formation onward, system
behavior is controlled not by WF instability but by the heter-
ogeneous field; subsequent infiltration cycles simply follow the
hysteresis-induced template of the initial unstable event. Thus
the oversaturation and subsequent nonmonotonic behavior
demonstrated by gravity-driven fingers is an essential charac-
teristic of the phenomenon and in combination with hysteresis
controls subsequent system evolution. While gravity-driven fin-
gering in unsaturated media is actually stabilized by viscous
forces, it is often considered to be a subset of viscous fingering
after the early theoretical and experimental works of Saffman
and Taylor [1958] and Chouke et al. [1959]. However, the non-
monotonic signature of gravity-driven fingers fundamentally
separates the critical physics of these two classes of fingering.

Recently, Nieber [1996] simulated gravity-driven fingering in

initially dry, highly nonlinear, and hysteretic porous media
using continuum representations of the physics as embodied in
Richards equation (RE) along with standard constitutive rela-
tions and hysteretic equations of state [Mualem, 1974, 1976;
van Genuchten, 1980], hereafter referred to as “standard
monotonic properties.” Nieber [1996] found, however, that the
hydraulic conductivity values across two nodes (i.e., the inter-
nodal averages) must be calculated with weighting toward the
downwind node, otherwise fingers do not form. By varying the
weighting parameter within the downwind averaging method at
a given spatial grid spacing, Nieber [1996] was able to calibrate
his results to reasonably match the finger widths found exper-
imentally by Glass et al. [1989a, 1989c]. Additionally, Nieber’s
[1996] simulations reflect the essential nonmonotonicity that is
characteristic of gravity-driven fingers. These initial simula-
tions have subsequently been extended in a series of papers
that study gravity unstable flow and solute transport in water-
repellent sandy soils [Ritsema et al., 1998a, 1998b; Nguyen et al.,
1999a, 1999b; Nieber et al., 2000]. Additionally, in the work of
Ritsema et al. [1998a] the full two-phase flow form of the
governing equations (i.e., equations for both air-water) were
implemented, again with downwind averaging for the water
phase.

The apparent success and growing use of Nieber’s [1996]
approach suggests that indeed, the RE, or its two-phase flow
equivalents for the air-water system, are the correct governing
equations for unsaturated flow in the range of parameter space
where fingers occur. However, the RE and its two-phase equiv-
alents are continuum-scale parabolic partial differential equa-
tions (PDEs), which for constant flux boundary conditions and
standard monotonic properties should admit only monotonic
solutions that are bounded by the initial and boundary condi-
tions [e.g., Rubin and Steinhardt, 1963; Rubin et al., 1964;
Youngs, 1995]. Thus, considering the fundamental behavior of

This paper is not subject to U.S. copyright. Published in 2001 by the
American Geophysical Union.

Paper number 2000WR900403.

WATER RESOURCES RESEARCH, VOL. 37, NO. 8, PAGES 2019–2035, AUGUST 2001

2019



such parabolic PDEs as diffusive, we pose the question: Why
does Nieber’s [1996] approach simulate fingers and their inher-
ent nonmonotonic signature when for constant flux infiltration
the RE should yield a monotonic response?

To answer this question, we formulate a numerical solution
of the RE with standard monotonic properties that implements
a variety of averaging methods including downwinding. Illus-
trative simulations demonstrate that, while downwind averag-
ing is capable of yielding “finger-like” solutions, other averag-
ing methods yield diffusive (i.e., “nonfingered”) responses. To
understand why downwind averaging yields fingers, we con-
sider the leading truncation error (LTE) terms associated with
the numerical discretizations and derive the modified govern-
ing equation that is actually being solved by each averaging
method. Analysis of the LTE terms’ behavior across the WF
shows that fingers simulated with downwinding are numerical
artifacts, entirely due to a truncation error induced oscillation
or oversaturation at the WF combined with capillary hysteresis.
These results support our thesis that the RE with standard
monotonic properties does not incorporate the critical physics
required to model gravity-driven fingers and must be consid-
ered inadequate in the range of parameter space where such
fingers occur.

2. “Finger-Like” Solutions
From Richards Equation

Nieber [1996] adopted a Galerkin Finite Element Method
(FEM) with bilinear (four-node quadrilateral) elements to dis-
cretize the spatial terms in the two-dimensional (2-D) form of
the RE and used a fully implicit first-order backward Euler
scheme [e.g., Celia et al., 1990] to discretize the temporal term.
He also used the standard monotonic properties of van Genu-
chten [1980] and Mualem [1976] with Mualem’s [1974] inde-
pendent domain hysteresis model. Nieber [1996] linearized the
resulting nonlinear system of algebraic equations based on the
modified-Picard iteration (MPI) method of Celia et al. [1990],
and during each nonlinear iteration step the system of linear
equations was solved using a preconditioned conjugate gradi-
ent method. Most of these features are relatively standard.
However, Nieber [1996] also implemented several nonstandard
features such as setting the hydraulic conductivity to zero when
the water content was below the residual moisture content of
the main drainage curve (MDC); considering an air-dry or
primary wetting curve (PWC) that is artificially depressed (i.e.,
the PWC has a near-zero water-entry pressure); forcing a jump
from the PWC to the MDC when saturation on the PWC is
;0.99; and most importantly, using downwind averaging to
evaluate the internodal conductivity values at the WF. As
stated by Nieber [1996] and confirmed by us, the critical finger
forming nonstandard feature is the downwind averaging of
internodal conductivity.

In the following sections, we present our numerical solution
of the RE with standard monotonic properties and consider its
behavior in a region of parameter space where fingers form
experimentally. In section 2.1 we summarize our initial bound-
ary value problem (IBVP) based on a 2-D dimensionless form
of the RE. In section 2.2 we describe our numerical solution
procedure using several first-, second-, and third-order accu-
rate internodal averaging methods in detail. In section 2.3 we
present a series of illustrative 2-D numerical results that dem-
onstrate both the success and failure of the various averaging
techniques to yield finger-like solutions. These results indicate

that the simulated critical characteristics of finger behavior do
not arise from the physics embodied in the RE, but from
artifacts introduced by the numerical technique.

2.1. RE, Standard Monotonic Properties,
and Initial-Boundary Conditions

In the following development, the dimension of a variable or
system parameter is given in brackets when first defined. For
unsaturated flow under isothermal conditions and assuming
negligible resistance to water flow by the air phase, the tradi-
tional two-phase flow equations reduce to the well known
single-phase form of the RE. We write the single-phase, time-
dependent, pressure-based form of the RE in 2-D Cartesian
coordinates as

C~c!
­c

­t 2 H ­

­ x FK~c!
­c

­ xG 1
­

­ z FK~c!
­c

­ zG J
5

­

­ z K~c! , (1)

where C(c)[L21] is the slope of the moisture-retention curve
commonly referred to as the water capacity function, c[L] is
the pressure head, t[T] is the time, x[L] and z[L] are the
horizontal and vertical directions, respectively, and
K(c)[LT21] is the hydraulic conductivity function. We define
the functional forms of the equation of state (i.e., the moisture-
retention relation) and the constitutive relation (i.e., the hy-
draulic conductivity function) using the standard monotonic
models of van Genuchten [1980] and Mualem [1976], respec-
tively, as

QH~c! ; @~uH~c! 2 u r!/~u s 2 u r!# 5 @1 1 ~acuc u!n#2m (2a)

K~Q! 5 KsÎQH~c! @1 2 ~1 2 QH~c!1/m!m#2, (2b)

where QH(c) and uH(c)[L3L23] are the hysteretic satura-
tion and volumetric moisture content, respectively, as a func-
tion of pressure, ur[L3L23] and us[L3L23] are the residual
and saturated moisture content values, respectively, ac[L21]
is the inverse capillary length for a given hysteretic moisture-
retention branch c (e.g., PWC, MDC, etc.), n defines the
media nonlinearity, m 5 1 2 (1/n), and Ks[LT21] is the
saturated conductivity of the medium. Here we consider only
standard monotonic properties and thus take K to be hysteretic
with respect to c but nonhysteretic with respect to Q, consis-
tent with the experimental findings of Topp and Miller [1966],
Talsma [1970], and Vachaud and Thony [1971]. Finally, we
choose to represent hysteresis in QH(c) through the use of
Scott et al.’s [1983] empirical scaling model. From comparisons
to experimental data for sands that support gravity-driven fin-
gering, Norton [1995] found this simple empirical model to be
of equal accuracy to other more complicated and theoretical
approaches [e.g., Mualem, 1974, 1984; Hogarth et al., 1988].

To simplify our studies, we nondimensionalize (1) and (2) by
using the following variables: G(C) 5 C(c)/aPWC, C 5
caPWC, t 5 t(aPWCKs), h 5 xaPWC, j 5 zaPWC, and
k(C) 5 K(c)/Ks, where aPWC[L21] is the inverse capillary
length of the PWC. Here G(C), C , t , h , j , and k(C) are the
dimensionless water capacity function, pressure head, time,
horizontal and vertical positions, and hydraulic conductivity
function, respectively. Substituting these dimensionless vari-
ables into (1) yields
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and the dimensionless monotonic properties

QH~C! 5 @1 1 ~a* uC u!n#2m

and (4a)

k~Q! 5 ÎQH~C! @1 2 ~1 2 QH~C!1/m!m#2.

The dimensionless form of the water capacity function, G(C),
as

G~C! 5
­QH~C!

­C
5 nma*~a* uC u!n21@1 1 ~a* uC u!n#2~m11!

(4b)

where a* 5 ac/aPWC is the dimensionless inverse capillary
length for a given hysteretic moisture-retention branch c . Fig-
ure 1 depicts a typical closed-loop hysteresis diagram, in which
the PWC and MDC form the bounding curves. We also define
a*H as the maximum hysteresis loop size given by the ratio of
aMDC to aPWC. For nonhysteretic cases the PWC and MDC
are the same, and a*H 5 1.

The domain along with the initial and boundary conditions
are graphically presented in Figure 2. The dimensionless do-
main sizes in the horizontal and vertical directions, respec-
tively, are given by L* 5 aPWCL and H* 5 aPWCH with
L[L] and H[L] representing the horizontal and vertical do-
main width and height, respectively. To initialize the problem,
we place the entire domain on the PWC and specify a uniform
saturation Q i. We use flux boundary conditions on all sides,
with zero flux applied to the left (h 5 0), right (h 5 L*), and
bottom (j 5 2H*) boundaries. We also impose a zero flux on

the top or surface (j 5 0) boundary, except at the center where
we supply a constant surface flux ratio of Rs 5 qs/Ks, over
zone of width (h1 2 h0). Here qs[L/T] is the supplied surface
flux and (h1 2 h0) refers to the dimensionless source width.

As the solution evolves from this initial condition via the
imposed flux supplied at the top of the problem, we allow
hysteretic property branches as specified by Scott et al.’s [1983]
hysteresis model to be initiated at any location where a pres-
sure reversal is determined to occur. Thus, from the initial
condition on the PWC, a scanning drainage curve (SDC) can
be initiated (see Figure 1) with subsequent reversals to higher-
order scanning curves as required.

2.2. Finite-Difference Discretization
and Solution of the RE

To numerically solve (3) subject to initial and boundary
conditions shown in Figure 2, we evaluate the temporal deriv-
ative using a fully implicit first-order backward Euler scheme
[e.g., Celia et al., 1990] and approximate the spatial derivatives
by a staggered grid (i.e., cell-centered) finite difference method
(FDM) [e.g., Harlow and Amsden, 1975]. Since the discretiza-
tion of (3) with nonlinear properties (4) results in a system of
nonlinear algebraic equations, we use MPI [Celia et al., 1990]
to linearize the system of equations. Details for implementing
MPI are given by Cooley [1983] and Celia et al. [1990]. We also
use equal and constant grid spacing Dh 5 Dj throughout the
domain. In terms of the MPI method, we express the dis-
cretized form of our IBVP as

Figure 1. A typical closed-loop hysteresis diagram with PWC
and MDC representing the boundary curves along with typical
SDCs. In the figure the media nonlinearity parameter for the
bounding curves is nPWC 5 nMDC 5 15, and the maximum
hysteresis loop size is a*H 5 0.5. Note that an a*H of 1.0 lowers
the MDC to overlie the PWC. Such a single curve is used for
nonhysteretic cases.

Figure 2. Schematic representation of the computational do-
main including the initial and boundary conditions.
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n11,m
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n11,m ~DC i11, j

m11 2 DC i, j
m11!

2 k i21/ 2, j
n11,m ~DC i, j

m11 2 DC i21, j
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Dj2 @k i, j11/ 2

n11,m ~DC i, j11
m11

2 DC i, j
m11! 2 k i, j21/ 2

n11,m ~DC i, j
m11 2 DC i, j21

m11 !# 5 r i, j
n11,m, (5a)

where i and j are the mesh point indexes in the h and j
directions, respectively, n 1 1 refers to the current (i.e., un-
known) time step, m and m 1 1 indicate the previous and
current iteration levels for the MPI step, respectively, Dtn11 is
the current time step size, DCm11 5 (Cn11,m11 2 Cn11,m)
is the iteration increment (i.e., the change in the unknown
pressure between two consecutive nonlinear iteration steps),
and ri , j

n11,m on the right-hand side (RHS) includes all the
known parts that are at the iteration level m. We can write
ri , j

n11,m as

r i, j
n11,m 5

1
Dh2 @k i11/ 2, j

n11,m ~C i11, j
n11,m 2 C i, j

n11,m! 2 k i21/ 2, j
n11,m ~C i, j

n11,m

2 C i21, j
n11,m)] 1

1
Dj2 @k i, j11/ 2

n11,m ~C i, j11
n11,m 2 C i, j

n11,m!

2 k i, j21/ 2
n11,m ~C i, j

n11,m 2 C i, j21
n11,m!] 1

k i, j11/ 2
n11,m 2 k i, j21/ 2

n11,m

Dj

1
Rs,B

Dj
2

Q i, j
n11,m 2 Q i, j

n

Dtn11
, (5b)

where the first and second group of terms on the RHS of (5b)
refer to the discretization of capillary components in the h and
j directions, respectively, the third term is the discretized form
of the gravity component, the fourth term includes the applied
flux value for the boundary nodes that are subject to a nonzero
Rs only, and the last term is the discretization of temporal
derivative that arises from the basic formulation of the MPI
and takes advantage of the mass-conservative properties of the
mixed form of the RE (for more details, see Celia et al. [1990]).
In (5a) and (5b) all terms with the exception of the unknown
vector DC i , j

m11 are linearized and thus are known.
To obtain the solution for DC i , j

m11 at the current MPI iter-
ation level, we invert the resulting coefficient matrix using a
Line Relaxation (LR) method [e.g., Anderson et al., 1984, p.
134]. (For one-dimensional (1-D) problems considered in sec-
tion 3, we use the Thomas algorithm [e.g., Anderson et al., 1984,
p. 128] to directly invert the matrix.) Since the LR method
includes a relaxation parameter V, we determine its size using

V 5 @~1 2 Î1 2 r s
2!/~1 1 Î1 2 r s

2!# , (6a)

where rs refers to the spectral radius. We calculate rs as
suggested by Press et al. [1992, p. 867], which for square grids
can be written as

r s 5
1
2

@cos ~p/I! 1 cos ~p/J!# , (6b)

where I and J are the total number of grid points in h and j
directions, respectively. Since, in general, V , 1, we actually
use “underrelaxation” which is often required for the conver-
gence of nonlinear elliptic equations [e.g., Anderson et al.,
1984, p. 133]. Additionally, as the grid becomes coarser (i.e., I
and J decrease), the value of V approaches zero, and we find
that convergence can be ensured as long as 0.9 # V # 0.95.
Thus we constrain the relaxation parameter to always fall
within this range. Also, to terminate the LR process, we use a

convergence criterion of 10212 based on norm-2 error for
DC i , j

m11.
Following matrix inversion, we check for the convergence of

the nonlinear iteration step (i.e., MPI). If the absolute and
relative errors in the pressure and saturation between two
consecutive iterations is greater than a value of 1026, we up-
date all properties without checking for the hysteretic state of
the moisture retention, and continue to iterate until conver-
gence is obtained. Following convergence of the MPI step, we
update QH(C), k(Q), and G(C) for the current time and
advance to the next time cycle. In all simulations presented
here, the global mass balance error was found to be on the
order of 1027 or smaller.

For hysteretic cases, to assess whether any pressure reversals
have occurred at the end of each time step (i.e., following MPI
convergence), we check for changes in the nodal pressures
from the previous time step (i.e., DC i , j

n11 5 C i , j
n11 2 C i , j

n ). If
the sign of DC i , j

n11 at node (i , j) has changed, and uDC i , j
n11u .

«H, where «H is the reversal threshold, node (i , j) is placed on
a new branch. Kool and Parker [1987] suggest taking «H large
enough to avoid the influence of oscillations in the numerical
solution. Because we are interested in the influence of the
numerical technique, we set «H to a small number slightly
larger than the computer’s round-off error (e.g., «H '
10215).

From (5a) and (5b) the numerical parameters controlling
the solution are the time step size (Dtn11), spatial grid spac-
ing (Dh 5 Dj), and internodal averaging technique (k i , j61/ 2

n11,m

or k i61/ 2, j
n11,m ). We choose to remove direct dependency on time

step size by linking it conservatively to the maximum velocity in
the problem as follows. We compute the time step as Dtn11 5
min (1.05Dtn, Dtmax), where Dtn and Dtmax are the previous
and maximum time step values, and start simulations with a
small initial time step size, Dt0 5 10210. Dtmax is calculated
as a fraction of the spatial grid spacing using Dtmax 5 0.1(D/
vmax), where D 5 Dh 5 Dj and vmax is the dimensionless
maximum Darcy velocity (i.e., the ratio of the dimensionless
flux to the saturation) within the problem domain. The con-
stant, 0.1, is a time step safety factor to ensure numerical
stability; this constant is related to the Courant-Friedrichs-
Lewy (CFL) condition commonly used in numerical solutions
of advection-dominated flows [e.g., Anderson et al., 1984, p.
75]. If, however, the MPI step fails to converge within eight
iterations, we reduce Dtn11 by 25% and begin the time cycle
again.

To evaluate the internodal conductivities (i.e., k i , j61/ 2
n11,m or

k i61/ 2, j
n11,m ), we considered a number of standard averaging

methods such as the upwind, harmonic, geometric, arithmetic,
as well as other mixed averaging methods suggested by
Haverkamp and Vauclin [1979] and Zaidel and Russo [1992].
Here we present our results using the first-order downwind
(DW1), first-order upwind (UW1), arithmetic averaging or
second-order centered difference (CD2), and a third-order
centered difference (CD3) as these encompass a full range of
behavior. We can express the first three methods using a class
of averaging methods called the partial donor cell (PDC)
method [e.g., see Harlow and Amsden, 1975]. The PDC is given
by

k i, j11/ 2
n11,m 5

1
2

@~1 1 wsi, j11/ 2!k i, j
n11,m 1 ~1 2 wsi, j11/ 2!k i, j11

n11,m# , (7a)

where w is a weighting parameter and si , j11/ 2 determines the
flow direction. Although the flow direction is usually deter-

ELIASSI AND GLASS: CONTINUUM-SCALE MODELING OF GRAVITY-DRIVEN FINGERS2022



mined from the nodal velocity [e.g., Harlow and Amsden, 1975],
we found it more convenient to use the difference in the
hydraulic conductivity of two adjacent nodes to define si , j11/ 2

as

si, j11/ 2 5 sgn~k i, j
n11,m 2 k i, j11

n11,m!

5 H 1 if ~k i, j
n11,m 2 k i, j11

n11,m! $ 0
21 if ~k i, j

n11,m 2 k i, j11
n11,m! , 0. (7b)

For w 5 0 and 1, PDC yields the CD2 and UW1 methods,
respectively, and for 21 , w , 0 we have the DW1 method.
When w 5 21 (i.e., full downwind), the numerical solution
fails to converge for flow into an initially dry material [e.g., see
Nieber, 1996]. For this reason, we generally use 21 , w , 0
to form DW1. The w values reported by Nieber [1996] for his
simulations were 20.9, 20.8, 20.7, 20.5, and 0.0. Similar
downwind averaging has also been used by Ritsema et al.
[1998a, 1998b] and Nguyen et al. [1999a, 1999b], but they do not
state the w values in their studies. The reported value of Nieber
et al. [2000] to simulate fingers in highly water-repellent sands
was w 5 20.95. The third-order centered difference method
(CD3) we use is Leonard’s [1979] method:

k i, j11/ 2
n11,m 5

1
6

@2k i, j11
n11,m 1 5k i, j

n11,m 2 k i, j21
n11,m# . (7c)

Finally, note that in (7a), (7b), and (7c) we only state the
average between nodes (i , j) and (i , j 1 1), that is, k i , j11/ 2

n11,m ,
and thus the same approach must be applied to the other node
combinations as well.

2.3. Two-Dimensional Illustrative Examples

Our dimensionless problem statement and numerical solu-
tion reduces problem parameters to the material properties

(a*H and nPWC), initial and boundary conditions (Q i and Rs),
grid spacing (Dj 5 Dh), and choice of averaging method
(UW1, DW1, CD2, and CD3). We now present a suite of 2-D
simulations that illustrate numerical solution behavior for a
single set of physical parameters defined to be within the range
where gravity-driven fingers have been found experimentally.
We first consider the effect of averaging method for hysteretic
simulations with a grid spacing of Dh 5 Dj 5 0.2, typical of
that used by Nieber [1996]. We then extend these results and
show the effect of grid refinement on the solution by setting
Dh 5 Dj 5 0.05 (i.e., a factor of 4 smaller). Finally, we show
two typical nonhysteretic simulations for these two different
grid resolutions.

Table 1 summarizes the various physical and numerical
problem parameters for the 2-D simulations presented in this
section. The computational domain is formed by a rectangle of
size L* 5 10 by H* 5 20. For hysteretic simulations we take
a*H 5 0.5, which is representative of many porous materials
[e.g., Kool and Parker, 1987] as well as sands where gravity-
driven fingering occurs (see data by Norton [1995]). The value
for the media nonlinearity parameter, nPWC 5 15, is well
within the range for materials that support gravity-driven fin-
gers [e.g., Norton, 1995; Nieber, 1996; Ritsema et al., 1998a;
Nieber et al., 2000]. The initial condition is taken as air dry with
a value for Q i of 10210. Finally, the flux in the middle of the top
boundary is prescribed by an Rs 5 0.1, within the range shown
by Glass et al. [1989a, 1989b, 1989c] to yield fingers.

Plates 1a, 1b, and 1c illustrate typical hysteretic results for
the various averaging methods at grid spacing Dh 5 Dj 5
0.2. The CD2 result (i.e., w 5 0) in Plate 1a is also repre-
sentative of both UW1 and CD3 (not shown) and depicts the
expected result from the RE with a slender, diffusive plume

Table 1. Dimensionless Physical and Numerical Parameters for 1-D and 2-D Simulations

Parameters Values Common for Both 1-D and 2-D Simulations
Applied flux ratio Rs 0.1
Material nonlinearity for MDC, nMDC 15 (see hysteresis curves in Figure 1)
Inverse capillary pressure a*H 5 a*MDC/a*PWC 0.5 (hysteretic) and 1.0 (nonhysteretic)
Hysteretic reversal criterion «H 10215

Convergence criterion for MPI 1026

2-D Simulations
Initial saturation Q i 10210

Material nonlinearity for PWC, nPWC 15 (see hysteresis curves in Figure 1)
Domain width L* 10
Domain height H* 20
Top boundary condition source width h1 2 h0 0.2
Convergence criterion for LR solver 10212

Spatial grid spacing Dh 5 Dj
Plates 1a, 1b, 1c, and 1f 0.20 (5,304 nodes)
Plates 1d, 1e, and 1g 0.05 (81,204 nodes)

1-D Simulations
Domain height H* 20
Figures 5, 6, and 7

Initial saturation Q i 10210

Material nonlinearity for PWC, nPWC 15
Spatial grid spacing Dj 0.2 (Figures 5, 6, 7a, and 7b)
Spatial grid spacing Dj 0.2, 0.08, 0.04, 0.02, 0.01 (Figure 7c)

Figure 8a
Initial saturation Q i 10210 through 1022, 0.075, 0.3, 0.4
Material nonlinearity for PWC, nPWC 15
Spatial grid spacing Dj 0.2

Figure 8b
Initial saturation Q i 10210

Material nonlinearity for PWC, nPWC 2, 3, 5, 10, 15, 50
Spatial grid spacing Dj 0.2
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growing both downward and laterally. We note that for these
simulations, no hysteretic reversals occurred. DW1 results with
w 5 20.9 and 20.8 are shown in Plates 1b and 1c, respec-
tively. The values for the w parameter selected for these sim-
ulations are typical of those reported by Nieber [1996]. The
DW1 results are qualitatively similar to a physical finger and
demonstrate a hysteretic reversal with higher-saturation finger
tips that drain a distance behind. Vertical saturation profiles

along the centerline for each of these fields (Figure 3a) show
clearly that while the saturation for the CD2 simulation is
monotonic with the maximum saturation occurring near the
source (i.e., at j 5 0), the DW1 profiles are nonmonotonic with
the maximum saturation occurring at the finger tip. Also, note
in Figure 3a that, for w 5 20.9, the maximum saturation at
the finger tip is ;0.88, while for w 5 20.8 it reduces to ;0.70.
In other words, we see that a small increase in the w value,

Plate 1. The 2-D RE simulations for constant flux infiltration in an initially dry media at t 5 100 (see Table
1 for physical parameter values). Each image has a dimensionless height of 20 and width of 10, and the
saturation of each grid block is depicted with a color scale that ranges from zero to one without interpolation
or smoothing. Hysteretic results for grid spacing Dh 5 Dj 5 0.2: (a) CD2, (b) DW1 with w 5 20.9, and
(c) DW1 with w 5 20.8. Effect of grid refinement on hysteretic cases for Dh 5 Dj 5 0.05: (d) CD2 and
(e) DW1 with w 5 20.8. Nonhysteretic results for DW1 with w 5 20.8 for two different grid spacings: (f)
Dh 5 Dj 5 0.2, and (g) Dh 5 Dj 5 0.05.
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which is simply a numerical parameter, has a significant influ-
ence on the finger tip saturation.

The differences in the solution results for DW1 and the
other averaging methods (as represented by CD2) are striking.
What is the cause? A first hint is found when we consider grid

spacing. Reducing the grid spacing by a factor of 4 to Dh 5
Dj 5 0.05 and repeating the calculations shows the solution
for CD2 (as well as UW1 and CD3, again not shown here) to
change only slightly (Plate 1d) indicating that we are indeed at
or very near the converged (i.e., grid-independent) solution of
the RE. However, for DW1 with w 5 20.8, as we refine the
grid, we find that the finger core begins to slightly widen (Plate
1e), and as Figure 3b reveals, the maximum saturation at the
finger tip is now decreased from ;0.70 for Dh 5 Dj 5 0.2 to
;0.51 for Dh 5 Dj 5 0.05. Thus, as we refine the grid, the
nonmonotonic signature of the gravity-driven finger fades. A
second hint arises when we consider nonhysteretic solutions.
Plates 1f and 1g depict the nonhysteretic solutions for DW1
with w 5 20.8, using Dh 5 Dj 5 0.2 and Dh 5 Dj 5 0.05,
respectively. The solutions for the nonhysteretic cases are now
more diffuse and closer to the CD2 results. However, under
close scrutiny these solutions show a one node long “oscilla-
tion” or oversaturation at the advancing tip of the profile (see
Figure 3c). Such an oscillation does not occur for similar non-
hysteretic solutions with CD2, UW1, or CD3.

As we will show in the next section, the ability of DW1 to
simulate fingers is wholly due to the oscillation or oversatura-
tion at the WF seen in the nonhysteretic case. We will also
show the oscillation arises from the LTE terms of the spatial
(i.e., capillary and gravity) components of the RE, whose func-
tional behavior and magnitude are directly related to the av-
eraging method used. In combination with hysteresis this local
numerical oscillation yields an “organized oscillation” with a
wavelength ;0.5 (i.e., ;a*H) similar to that found for physical
fingers [Glass et al., 1989b]. We shall also show this finger-like
behavior in our 2-D illustrations for DW1 but not for CD2 (or
UW1 and CD3) is caused by the fact that, at the grid spacing
used, the LTE terms for DW1 are more than 1 order of mag-
nitude larger than for CD2. Thus the 2-D numerical solutions
using DW1 are not solving the RE at all, but a modified
governing equation where the truncation error yields artificial
terms that are of comparable size to the physical components
in the RE.

3. Truncation Error and the Modified
Governing Equation

Formal evaluation of the local truncation error is conducted
by Taylor series expansion of each term in the discretized
equation. Following the Taylor series expansion, we obtain an
equation that is composed of the original PDE along with
other additional terms. This equation, referred to as the “mod-
ified governing equation,” is the actual PDE being solved
[Warming and Hyett, 1974]. Appendix A presents the power
series forms of the local truncation error terms for temporal,
capillary, and gravity components in the RE as a function of
the various averaging methods used in this study. In general,
the leading (i.e., the lowest order) terms for each of the power
series are largest, yielding the following lowest-order, modified
governing equation for constant grid spacing:

G~C!
­C

­t
2 H ­

­h F k~C!
­C

­h G 1
­

­j F k~C!
­C

­j G J
2

­k~C!

­j
5 2G~C!SDt

2 D ­2C

­t2 2 Ecap~h , j!

2 b,

­,11k~C!

­j,11 . (8a)

Figure 3. Vertical saturation profiles along the centerline
h 5 5 for the various 2-D results shown in Plate 1: (a) hyster-
etic cases for Dh 5 Dj 5 0.2 shown in Plates 1a, 1b, and 1c,
(b) hysteretic cases for Dh 5 Dj 5 0.05 shown in Plates 1d
and 1e, and (c) nonhysteretic cases shown in Plates 1f and 1g.
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The left-hand side (LHS) of (8a) represents the original form
of the RE stated in (3), and the three terms on the RHS refer
to the LTE terms for the temporal, capillary, and gravity com-
ponents, respectively. b, is the lowest spatial coefficient for
each averaging method, and , refers to the spatial order of
accuracy of the averaging method. For the averaging methods
considered here: , 5 1 and b, 5 w(Dj/ 2) for UW1 (w 5 1)
and DW1 (w , 0); , 5 2 and b, 5 Dj2/6 for CD2; and
finally for CD3, , 5 3 and b, 5 Dj3/12.

Using Appendix A, the capillary component’s LTE term
Ecap(h, j) for the first-order methods DW1 and UW1 (i.e., , 5
1) can be written as

Ecap~h , j! 5 wH SDh

2 D ­

­h F ­C

­h

­k~C!

­h G
1 SDj

2 D ­

­j F ­C

­j

­k~C!

­j G J (8b)

with w , 0 for DW1 and w 5 1 for UW1. For the second-
order CD2 method (i.e., , 5 2), Ecap(h, j) is of the form
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and lastly for the third-order CD3 method (i.e., , 5 3),
Ecap(h, j) becomes

Ecap~h , j! 5
Dh2

12 H 2
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Note that for the CD3, discretization of the capillary compo-
nent reduces the overall accuracy of the solution to only sec-
ond order. We also note that when the grid is not uniform, the
order of accuracy for all averaging methods also reduces by 1
for both the capillary and gravity components. Regardless, the
critical issue is that when the various LTE terms are large
enough for the RHS of (8a) to be nonnegligible, the numerical
method actually solves a different governing equation than
intended.

Figure 4. (opposite) Analytical illustrations of LTE term be-
havior for the various averaging methods: (a) comparison be-
tween the 1-D numerical (solid) and analytical (dashed) pro-
files; and normalized LTE term behavior for the (b) gravity
component and (c) capillary component. The numerical profile
in Figure 4a is the converged solution for UW1 with n 5 15,
Dj 5 0.01 and other parameters listed in Table 1. Equation
(9) approximates the numerical solution with CA 5 25.1795,
C i 5 21.0244, jWF 5 214, and l 5 115. The saturation
profile shown in Figure 4a is obtained by substituting (9) into
(4a) with n 5 15 and a* 5 1. The LTE terms are evaluated
analytically using (8a) through (8d). The magnitude of the
truncation error terms (on the right-hand vertical axis) are
normalized by their maximum (i.e., infinite norm) values to
facilitate behavioral comparison.
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In the remainder of this section we analyze the behavior of
the spatial LTE terms with special emphasis near the WF.
Because we use a very restrictive CFL-based time step crite-
rion, the temporal LTE term is always negligibly small and thus
is not discussed further in this paper. To make our analysis
more tractable, we first focus on a 1-D vertical problem where
all h terms drop. In section 3.1 we illustrate and categorize the
qualitative behavior of the various LTE terms (equations (8a)
through (8d)) using a hypothetical, 1-D analytic representation
for the pressure head profile across a WF. To fully consider the
magnitudes of the LTE terms and their feedback within the
RE, we next present a series of nonhysteretic and hysteretic
1-D simulations in sections 3.2 and 3.3, respectively, and eval-
uate numerical representations of the various LTE terms.
These 1-D numerical results, while approximate, allow us to
quantitatively discuss the behavior of the various LTE terms
and their role in yielding oscillatory behavior. In particular,
when hysteresis is included, the LTE terms are shown to cause
an organized oscillation that is quite similar to the nonmono-
tonic profile within a physical gravity-driven finger. Interest-
ingly, in section 3.4 we illustrate additional near physical trends
in the 1-D finger-like solutions as a function of the initial
saturation and material nonlinearity. Finally, in section 3.5 we
analyze the behavior of the LTE terms in 2-D solutions and
relate the origin of the 2-D finger-like response to the oscilla-
tions seen in the 1-D cases.

3.1. One-Dimensional Analytical Illustration
of LTE Term Behavior

To illustrate the functional behavior of the various spatial
LTE terms across the WF, we consider a hypothetical pressure
profile

C~j! 5 ~CA 2 C i!H exp S2
j

jWF
D l

2 1J 1 CA, (9)

where CA is the final or asymptotic pressure, C i is the initial
pressure, jWF is a scaling parameter that is used to adjust the
WF position, and l is a WF sharpness factor. The profile (9) is
not a solution of the RE; however, it qualitatively adheres to
such solution profiles (see Figure 4a) and allows us to analyt-
ically consider and categorize the fundamental qualitative be-
haviors of each LTE term as a WF is crossed. Substituting (9)
into (4a) yields saturation Q(j) and hydraulic conductivity k(j)
profiles, which are then explicitly evaluated for the various
spatial derivatives on the RHS of (8a) through (8d).

Figures 4b and 4c show the functional behavior of the gravity
and capillary components’ LTE terms for the different aver-
aging methods, plotted along with the hypothetical saturation
profile Q(j) near the WF. In order to focus on the behavior
across the WF the values for the LTE terms in this figure are
normalized so that they range between 21 and 11. For UW1
the LTE term for the gravity component has a second deriva-
tive of k with respect to j which, as Figure 4b shows, yields a
positive maximum and a negative minimum ahead and behind
the WF, respectively. For DW1 the form of this error is iden-
tical to that of UW1 with w , 0. Thus DW1’s behavior is
opposite to that of UW1 as the WF is crossed. Since CD2 (i.e.,
w 5 0) has a third-order derivative, with respect to UW1, CD2
naturally yields another peak further behind the WF (see Fig-
ure 4b). Finally, for CD3 the fourth-order derivative yields yet
an additional valley ahead of the WF. For the capillary com-
ponent the LTE term behavior is less obvious from (8b)

through (8d). However, we see in Figure 4c that normalized
Ecap(j) profiles for UW1, DW1, and CD2 all display a similar
behavior to their gravity component LTE terms, and thus are
in phase across the WF.

We can categorize the various methods with respect to their
LTE term behavior as follows. UW1 yields an “artificial diffu-
sion,” which speeds up the “front” of the WF and slows down
its “back,” the net effect being to smear the WF [e.g., Gresho
and Lee, 1981]. Because of this behavior across the WF, UW1
is inherently monotonic [e.g., see Forsyth and Kropinski, 1997].
Since the LTE terms for DW1 are opposite of UW1, DW1
yields an “artificial compression,” which holds back the front of
the WF and speeds up its back, the net effect being to sharpen
the WF [Leonard and Niknafs, 1991]. The positive error behind
the WF can ultimately cause an oversaturation and thus a
nonmonotonic response. For both CD2 and CD3 the LTE
term behavior, in general, yields an “artificial dispersion,”
which distorts a WF by introducing oscillations [e.g., see Ander-
son et al., 1984, p. 92; Patel et al., 1985; Liu et al., 1995; Forsyth
and Kropinski, 1997]. As with DW1, the positive portions of the
oscillatory error behind the WF can cause corresponding over-
saturation and nonmonotonicity for these methods. Finally,
this analysis allows one to easily understand the influence of
WF sharpness on the LTE terms. As l increases and the WF
sharpens (i.e., as the gradients in pressure, saturation, and
hydraulic conductivity across the WF grow), the LTE terms
focus to a narrowing zone near the WF where their absolute
values (both negative and positive) will grow. In general, such
WF sharpening corresponds to increases in media nonlinearity
n or decreases in the initial saturation Q i.

3.2. One-Dimensional Nonhysteretic Simulations
and LTE Term Behavior

To consider the quantitative behavior of each LTE term in
the context of the numerical solution where feedback among
the various terms occurs, we solve the 1-D problem for the
same set of physical parameters used in our 2-D illustrations in
section 2.3 with numerical parameters as listed in Table 1.
Figure 5 presents near WF saturation profiles for the various
averaging methods at a grid spacing of Dj 5 0.2. Not surpris-
ingly, while only UW1 attains a monotonic (i.e., oscillation-

Figure 5. Nonhysteretic 1-D saturation profiles near the wet-
ting front as a function of averaging technique at t 5 60 for
Q i 5 10210, Rs 5 0.1, nPWC 5 15, and Dj 5 0.2.
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free) solution, all other averaging methods yield oscillatory
results. The oscillatory nature of each profile depends upon the
averaging technique used. DW1 and CD2 show a single oscil-
lation of different amplitude at the back of the WF, but for
CD3, oscillations of varying periodicity and amplitude persist
over the entire domain behind.

Figure 6 displays the behavior of the gravity, capillary, and
total LTE terms for each of the profiles in Figure 5. To calcu-
late the LTE terms, we use the forms on the RHS of (8a)
through (8d) and employ second-order centered differences to
numerically estimate the various spatial derivatives from the
profiles. (We found centered differences to preserve symmetry
in the 1-D analytical illustrations presented in section 3.1 and
in the 2-D analysis presented later in section 3.5). Thus the
LTE terms are evaluated posteriori at the end of the simula-
tions using the computed nodal pressure, saturation, and hy-
draulic conductivity values.

In the case of UW1 (Figure 6a) the forms of the LTE term
for the gravity and capillary components are similar to the

analytical illustrations; that is, both LTE terms have a positive
and then a negative value ahead and behind the WF, respec-
tively. Across the WF the LTE term behavior for the other
three averaging methods is also consistent with the analytical
illustrations; however, we also see additional features. For the
DW1 method (Figure 6b) we find an additional negative error
swing behind the WF. For CD2 (Figure 6c), also at the back of
the WF, the LTE terms for the capillary and gravity compo-
nents are out of phase. Finally, as Figure 6d displays, the LTE
terms for CD3 continue to oscillate behind the WF. However,
despite these differences, at the WF where we are most inter-
ested, the LTE terms for the capillary and gravity components
are in phase for all methods and behave similarly to the ana-
lytical illustrations presented in section 3.1 and shown in Fig-
ures 4b and 4c.

It is clear from Figure 6 that the oversaturation behind the
WF for DW1, CD2, and CD3, or the lack thereof for UW1, is
due to the magnitude and behavior of the LTE terms as the
WF is crossed. DW1 exhibits the largest LTE term magnitude

Figure 6. Saturation profiles (see left-hand vertical axis) along with the local behavior of the gravity,
capillary, and total LTE terms (see right-hand vertical axis) for 1-D nonhysteretic results shown in Figure 5:
(a) UW1, (b) DW1 with w 5 20.8, (c) CD2, and (d) CD3. Note that to focus on the behavior near the WF,
the vertical scales among the figures are different.
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and corresponding oversaturation, followed by CD3, and CD2.
In the case of CD2 the oscillation due to the LTE terms does
not result in a very large oversaturation because CD2’s LTE
terms are more than an order of magnitude smaller than that
of DW1 (compare the LTE term values at the WF between
Figures 6b and 6c). Comparison of DW1 and UW1, which have
opposite LTE term functionality across the WF, emphasizes
the positive feedback within DW1 to increase and negative
feedback within UW1 to decrease the local truncation error.
For DW1 the WF is sharpened by the LTE terms which in turn
increases their magnitude; while for UW1 the LTE terms
smear the WF and thereby decrease their magnitude. Finally,
for all averaging methods, Figure 6 also shows the magnitude
for the gravity component’s LTE term is on average larger than
the LTE term for the capillary component, but both are always
of the same order of the magnitude.

3.3. One-Dimensional Hysteretic Simulations
and LTE Term Behavior

If we now consider the hysteretic solution for the same 1-D
cases as presented in section 3.2, we find an oscillatory struc-
ture which, as shown in Figure 7a, is entirely different from the
nonhysteretic profiles. While the solution for UW1 is once
again monotonic and is indeed the same as the nonhysteretic
case, the profiles for the other averaging methods now exhibit
an “organized oscillation,” with a wavelength an order of mag-
nitude longer than that typical of the nonhysteretic oscillations.
The amplitude of the organized oscillation (i.e., the saturation
at the back of the WF) varies as a function of the averaging
method and is directly related to the magnitude of the LTE
term. The DW1 method has the highest peak saturation value,
followed by CD3 and CD2. An example of the LTE term
behavior for DW1 with w 5 20.8 is presented in Figure 7b.
Comparison of Figure 7b to Figure 6b shows only a slight
difference in form and magnitude between hysteretic and non-
hysteretic cases. This is illustrative of what we find for the other
averaging methods (i.e., UW1, CD2, and CD3) as well.

The formation of the organized oscillation is explained
through the interaction of the LTE terms and hysteresis. From
Figure 1 we can see that a small change in the pressure at the
WF corresponds to a large change in saturation on the PWC.
The negative and positive swings in the spatial LTE terms for
all methods but UW1 cause the WF to first sharpen and then
overshoot the pressure/saturation at the back of the WF. For
nonhysteretic cases, where saturation is evaluated using the
PWC, the next downswing of the LTE terms behind the WF
yields a downward oscillation in saturation of short wave-
length. However, when hysteresis is considered and the down-
swing in the computed pressure behind the WF satisfies the
reversal threshold «H, the pressure oscillation causes a false
reversal to a new SDC. Referring to Figure 1, we see that the
dimensionless pressure downswings must be ;0.5 (i.e., on the
order of a*H) on the SDC before they substantially influence
the saturation behind the WF. While additional oscillations
behind the WF can cause reversals to secondary and higher-
order scanning (wetting or drainage) curves, the functional
behavior of these curves significantly masks the influence of
the small pressure perturbations on the saturation profile.
Thus hysteresis in combination with LTE term-induced numer-
ical oscillation yields an organized oscillation with a wave-
length on the order of a*H, similar to that found for physical
gravity-driven fingers [Glass et al., 1989b].

Finally, it is important to realize that, as we reduce the grid

Figure 7. One-dimensional hysteretic saturation profiles: (a)
saturation profiles as a function of averaging technique for the
identical problem shown in Figure 5, (b) saturation profiles
plotted along with the gravity, capillary, and total LTE terms
for DW1 with w 5 20.8, and (c) the effect of grid refinement
for DW1 with w 5 20.9.
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spacing, we decrease the LTE terms and eventually obtain a
“converged” (i.e., grid-independent) solution. To illustrate the
effect of grid refinement, Figure 7c presents the trend in the
1-D hysteretic simulations with Dj for the case with the largest
organized oscillation (DW1 with w 5 20.9). As Dj becomes
smaller, the amplitude of the organized oscillation behind the
WF diminishes yielding a converged, oscillation-free solution
that is monotonic for Dj 5 0.01. This same trend toward
monotonicity with decreasing Dj is also observed for CD2 and
CD3; however, convergence is obtained much sooner due to
their smaller LTE terms.

3.4. Near Physical Trends in Organized Oscillation
With Initial Saturation and Media Nonlinearity

While not fully understood, both the initial saturation and
media nonlinearity have been found to influence the occur-
rence and behavior of physical gravity-driven fingers [Glass and
Nicholl, 1996]. As the initial saturation increases, fingers widen
and eventually are suppressed. With respect to media nonlin-
earity, fingers have been found in sands where nPWC is large
but not in soils where nPWC is small. Interestingly, for a given
Dj where the LTE terms are prominent, the influences of the
initial saturation Q i and material nonlinearity nPWC on numer-
ical oscillation are similar to their effects on physical gravity-
driven fingers. That is, as the WF sharpness decreases due to
an increase in Q i or a reduction in nPWC, the strength of
numerical oscillations diminishes.

As an illustration of this near physical behavior, we present
1-D hysteretic solutions for Dj 5 0.2 using DW1 (w 5 20.8
and Rs 5 0.1), for nPWC 5 15 and various Q i values in Figure
8a, and various nPWC values with Q i 5 10210 in Figure 8b. In
Figure 8a we see that, for the chosen Dj and for nPWC, the
initial saturation has no effect on the final solution over the
range from 10210 # Q i # 1022, but for larger Q i values the
amplitude of the organized oscillation (i.e., the saturation be-
hind the WF) drops and the WF position moves further into
the domain. Eventually, for Q i of 0.4 (just below the value
determined by the top flux boundary condition) the solution is
monotonic. Considering media nonlinearity in Figure 8b, for a
medium with nPWC # 2 where the WF is naturally nonsharp
(e.g., soils), the LTE terms are small, and we obtain an oscil-
lation-free solution. However, as nPWC increases and the WF
sharpens, the organized oscillation grows because the greater
gradient across the WF results in larger LTE terms.

3.5. Role of LTE Term Behavior in “Simulating”
Fingers in Two Dimensions

We now return to analyze the LTE term behavior for rep-
resentative 2-D hysteretic and nonhysteretic simulations. Here
we will first focus on the DW1 method because DW1 yielded
2-D finger-like solutions (section 2.3) while the other averaging
methods (e.g., CD2) did not. To calculate an LTE term field,
we again use the derivatives stated in the RHS of (8a) and (8b)
and employ central differences to numerically estimate the
LTE terms from the 2-D solution field. This procedure is the
same as that used for the 1-D nonhysteretic and hysteretic
cases (sections 3.2 and 3.3) extended to 2-D. The total LTE
term fields for the 2-D simulations shown in Plate 1c (hyster-
etic) and Plate 1f (nonhysteretic) yield a much more compli-
cated error field than those in 1-D. In order to present the total
LTE term graphically, we assign black, white, and gray shades
to regions with negative, positive, and zero total LTE term,
respectively, in Figures 9a and 9b. We see that as the WF is

crossed either in the vertical or horizontal, the total LTE term
varies from negative to positive and back to negative. Thus the
overall error behavior is consistent with our previously dis-
cussed 1-D findings. The total LTE term for the nonhysteretic
case (Figure 9b) also shows additional oscillations behind the
front up through the center of the saturation plume (as can
also be seen in Figure 3c). Vertical profiles along the centerline
of the fields near the WF for the saturation and the gravity,
capillary, and total LTE terms are shown in Figures 10a and
10b. The behavior of these profiles again is consistent with the
hysteretic and nonhysteretic 1-D results. Thus the negative
part of LTE terms (ahead of the WF) sharpens the WF, while
the positive portion (behind the WF) generates an oscillation
and thus an oversaturation. Comparison of Figures 10a with 7b
shows that the magnitude of the LTE term for the hysteretic
2-D and 1-D cases are both nearly the same. However, a

Figure 8. Hysteretic 1-D saturation profiles for DW1 with
w 5 20.8, Dj 5 0.2, and Rs 5 0.1: (a) nPWC 5 15 and
various Q i values (note the domain size has been extended so
that the bottom no flux boundary condition does not influence
the WF at higher Q i values); and (b) Q i 5 10210 and various
nPWC values (note for a given Rs, different nPWC values result
in different saturation values behind the WF).
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similar comparison of nonhysteretic cases (Figures 10b and 6b)
shows the LTE term magnitude in 2-D to be approximately a
third of that in 1-D. The more diffuse nature of the 2-D
nonhysteretic solution is directly attributable to this reduction
in LTE term magnitude.

As a final analysis of tying the LTE terms to finger-like
behavior from the RE, we were curious why CD2 did not yield
a 2-D finger-like response in our earlier simulation (Plate 1a).
On the basis of our current understanding, when the LTE term
is sufficiently large (e.g., due to a very large grid spacing), any
averaging method with an oscillatory behavior should be able
to yield a finger-like solution with its nonmonotonic signature.
We therefore considered a case using CD2 where Dh 5 Dj 5
1.0, with the source two nodes wide and all other problem
parameters identical to the ones used in Plate 1a. The simu-
lation indeed yields a finger-like solution with a width two
nodes wide and a nonmonotonic organized oscillation with a
maximum saturation of ;0.50 at the finger tip draining to
;0.43 behind). Thus, by increasing the grid spacing and the
magnitude of the corresponding LTE terms, CD2 can indeed
yield a finger-like behavior in 2-D.

4. Discussion
Our analysis of the numerical solution of the RE supports

our thesis that the RE with standard monotonic properties
does not incorporate the critical physics required to model
gravity-driven fingers and must be considered inadequate
within the range of parameter space where such fingers occur.
In the following, we consider three general points of discussion
that address the applicability of the traditional RE. The first
considers issues surrounding the comprehensiveness of our

numerical results. The second asks whether the traditional full
two-phase flow approach would be able to simulate gravity-
driven fingers while the RE cannot. The third addresses the
artificial alteration of standard monotonic property parameters
and, in particular, the artificial reduction in the capillary pres-
sure driving the flow through scaling of aPWC.

4.1. Additional Numerical Experiments

The RE along with standard monotonic properties yields a
fairly complicated and nonlinear set of equations; only approx-
imate analytical solutions can be found, thus forcing us to use
numerical solutions. Because we argue in this paper that this
set of equations does not produce fingers where they have
shown to occur both physically [e.g., Glass et al., 1989b] and
numerically [e.g., Nieber, 1996], we attempted to be as thor-
ough as possible and conducted a number of supporting studies
that are not presented in this paper. We performed a wide
range of simulations with our numerical code where we care-

Figure 9. Two-dimensional total LTE term fields for DW1
with w 5 20.8 and Dh 5 Dj 5 0.2: (a) hysteretic simulation
in Plate 1c and (b) nonhysteretic simulation in Plate 1f. Posi-
tive, negative, and zero values of the total LTE terms are
mapped with black, white, and gray shades, respectively, to
show the general oscillatory solution behavior.

Figure 10. Vertical transects along the axis of symmetry h 5
5 of saturation (see left-hand vertical axis) and the gravity,
capillary, and total LTE terms (see right-hand vertical axis) for:
(a) hysteretic simulation in Plate 1c and (b) nonhysteretic
simulation in Plate 1f.
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fully considered issues of (1) numerical accuracy and require-
ments for solution monotonicity as a function of various aver-
aging methods; (2) implementation of implicit forms of the
Total Variations Diminishing (TVD) technique to ensure
monotonic results [Eliassi and Glass, 1997]; (3) the influence of
the hysteretic reversal threshold; (4) the choice of the capillary
hysteresis model [e.g., Scott et al., 1983; Mualem, 1974, 1984;
Hogarth et al., 1988]; and (5) the use of noniterative as well as
predictor-corrector time marching methods. Additionally, for
both 1-D and 2-D simulations we considered much wider
ranges of parameter values (i.e., Q i, nPWC, Rs, and a*) than
reported in this paper and also conducted numerical experi-
ments to examine horizontal imbibition, capillary rise, and
gravity drainage under both flux and head boundary condi-
tions. All of these supporting studies reinforced the results and
conclusions of this paper.

Finally, to confirm our results, we also considered two en-
tirely different numerical solution approaches embodied in
codes written by others. First, we implemented the downwind
method in the 1-D hysteretic FEM-based HYDRUS [Kool and
van Genuchten, 1991] code (as opposed to our use of a FDM-
based discretization). This approach produced results that
were similar to those presented in this paper. That is, the 1-D
hysteretic results with HYDRUS also yielded an organized
oscillation when the grid was coarse enough and a monotonic
solution when the grid was sufficiently refined. Second, we
compared our results with those from the TOUGH2 [Pruess,
1991] code which uses a Newton-Raphson linearization with
the choice of conjugate gradient solver (as opposed to our use
of the MPI method along with the LR solver for the 2-D cases).
The 2-D results using TOUGH2 were identical to those ob-
tained with our solution approach.

4.2. Two-Phase Flow Simulations

Considering the diffusive nature of parabolic PDEs, cou-
pling an additional such PDE should not change the funda-
mental behavior of the solution. In addition, for an open and
isothermal system such as we consider here (i.e., when the air
phase is allowed to escape and changes in the temperature
within the system are negligible and thus do not influence fluid
densities and viscosities), the air phase does not, in general,
alter water imbibition. Thus the RE should contain all the
relevant traditional physics. Nevertheless, to fully satisfy our-
selves, we used the TOUGH2 [Pruess, 1991] code to conduct a
series of two-phase (i.e., air-water) simulations, where air
could escape out of the bottom of the problem domain, and
compared the results to the cases where only the water phase
was considered. High-resolution two-phase flow simulations
revealed that when the air phase is included, the water satu-
ration, similar to the single-phase cases, is monotonic and the
plume is diffusive. Finally, we note that when Ritsema et al.
[1998a] considered the full two-phase flow equations, as for the
RE, they had to apply downwinding to the water phase to
simulate fingers.

4.3. Changes in the Hydraulic Properties

While the parameter values for the hydraulic properties
used in this study were representative of sands where fingers
occur and properties have been measured, let us consider
artificially changing them. We note that once we nondimen-
sionalize the problem, the number of hydraulic property pa-
rameters reduce to only two (i.e., the size of the hysteresis loop
a*H, and the media nonlinearity nPWC). The first of these, a*H,

becomes relevant only if a hysteretic reversal occurs and we
have shown that the RE does not support the oversaturation
that is required for such a reversal. The second, nPWC, could be
artificially increased such as to sharpen the front as might be
presumed to occur under dynamic conditions. However, we
found that as long as the grid spacing is chosen small enough, the
solution will remain monotonic and thus the converged (i.e., grid-
independent) solution will not yield a gravity-driven finger.

Regarding a reduction in the capillary pressure, the data of
Selker et al. [1992] indeed suggests that the capillary pressure at
finger tips is somewhat reduced from the presumed minimum
of ;1/aPWC; however, the water remains under tension for
hydrophilic sands, and the reduction is on the order of a factor
of ;0.5. If we ignore possible dynamic influences on the Darcy-
Buckingham flux law, the constitutive relations, or the equa-
tion of state that would change our problem from the RE with
standard monotonic properties, our dimensionless approach
can treat such a depression through the scaling with aPWC.
Since our solutions are all dimensionless, an increase in aPWC

of 2 will shrink the saturation field in Plate 1d to half its size,
thus decreasing the plume length and width by about half (note
that the source width must also be correspondingly decreased).
However, this scaled field also corresponds to a field at half the
time. Such changes influence both the horizontal and vertical
scales identically, and so at much longer times and larger
domains, while a plume may appear more slender and finger-like,
it will not contain the nonmonotonic signature of a gravity-driven
finger no matter how far aPWC is increased. We also note that
increasing aPWC artificially reduces (or removes for dramatic in-
creases in aPWC) both capillary rise and horizontal imbibition,
which in comparison to experiments, are both rapid and signifi-
cant for hydrophilic sands where gravity-driven fingering occurs.

It is interesting to note that a reduction in the capillary
pressure has been used recently to simulate preferential or
fingered flow in heterogeneous unsaturated rock fractures with
the RE [e.g., Pruess, 1998, 1999; Pruess et al., 1999]. The sim-
ulations presented in these papers indeed yield finger-like so-
lutions that appear strikingly realistic. On closer examination,
however, the fingers are found to actually follow high-
permeability pathways and avoid lower-permeability grid
blocks. In reality, capillary forces in low-permeability zones will
significantly alter the flow structure by pulling water preferen-
tially into them from high-permeability zones as can be dem-
onstrated in the laboratory [e.g., see Glass and Nicholl, 1996,
Figures 10 and 11].

Finally, we emphasize that if the values of the hydraulic
parameters such as nPWC and aPWC are modified by dynamic
conditions, these modifications must hold within the entire
problem for all time and space in order for the properties to
remain standard and monotonic. Because such modifications
will not yield gravity-driven fingers, we are left to hypothesize
nonstandard or nontraditional alternatives, each of which
would incorporate additional physics. Such alternatives include
but are not limited to a dynamic capillary pressure resulting in
nonstandard equations of state; modified nonmonotonic con-
stitutive relations for the relative permeability; and/or entirely
different formulations of the flux law itself.

5. Concluding Remarks
As suggested by Nieber [1996], we confirmed that the RE

with hysteresis and a downwind averaging method can simulate
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finger-like behavior. However, we found that these fingers are
numerical artifacts caused by a LTE term-induced oscillation
that arises from the highly inaccurate nature of the downwind
method. When we reduced the magnitude of the LTE terms
through grid refinement, the finger-like nonmonotonic signa-
ture fades, and the WF eventually becomes monotonic. The
more than 1 order of magnitude greater error of DW1 (relative
to CD2) makes its LTE terms highly persistent, and to obtain
an oscillation-free solution, DW1 requires extreme grid refine-
ment. Moreover, downwind methods are inherently unstable
[e.g., Roache, 1972, p. 68] and in the absence of a diffusive
effect (i.e., the capillary term in the RE) do not yield bounded
numerical solutions. Making use of an approach such as down-
winding that relies on the LTE terms and subsequent numer-
ical oscillation to simulate a physical phenomenon is problem-
atic. Even while many aspects of the physical behavior can be
mimicked through calibration of various numerical parame-
ters, such an approach is not general and cannot be used to
explore the true physical phenomenon within parameter space.

Thus we conclude that the RE along with standard mono-
tonic constitutive relations and hysteretic equations of state
cannot support a physically nonmonotonic flow response for a
constant flux boundary condition. Since such physical non-
monotonicity is an essential characteristic of gravity-driven fin-
gers, standard unsaturated flow theory (i.e., either the flux law
and/or the standard monotonic properties) is insufficient to
describe all aspects of unsaturated flow physics especially for
infiltration in initially dry, highly nonlinear, and hysteretic me-
dia where gravity-driven fingers occur. We are certainly not the
first to question the generality or even the validity of the RE
[e.g., see Gray and Hassanizadeh, 1991; Stonestrom and Akstin,
1994]. However, in the context of gravity-driven fingering, the
dramatically deviant physical behavior is a clear manifestation
of the shortcomings of traditional theory.

Appendix A: Truncation Error for Various
Terms of Richards Equation

Haverkamp and Vauclin [1979] presented temporal and spa-
tial local truncation error (TE) terms of a number of averaging
methods. Here we use the finite difference (FD) discretization
of each RE component, and state the corresponding power
series forms of the TE terms, for uniform grid spacing, as
Temporal derivative
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n11 2 C i, j

n !
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Capillary component in the horizontal direction
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Capillary component in the vertical direction
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Gravity component
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The first term on the RHS of each equation is the differential
form, and the second term is the TE term. Ecap(h) and Ecap(j)
are the error due to the capillary components in the h and j
directions, respectively, and b j is the spatial (i.e., grid spacing
dependent) coefficient. b j, Ecap(h), and Ecap(j) depend upon
the averaging method. For the PDC method (i.e., DW1, CD2,
and UW1), b j has the following general form:

b j 5
1
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j 5 1, 2, 3, . . . ,

and for the CD3, b j becomes

b j 5
1
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j 5 3, 4, 5, . . . ,

We can generally state the capillary component’s LTE term in
the j direction, Ecap(j), as

Ecap~j! 5 we0~j! 1 e1~j! 1 2ke2~j! 1 e3~j! , (A7)
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and
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Note that a similar set of relations as (A7) through (A12) must
be also stated for h direction for Ecap(h).
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